Saturday, 23/Sep/2017, 22:53
 
Home Sign Up RSS
Welcome, Guest
 





ARE YOU A REGISTERED MEMBER?
PLEASE SIGN IN BELOW:
User Name:
Password:





[ · New messages · Members · Forum rules · Search · RSS ]

Page 1 of 11
Forum » EDUCATION » MATHEMATICS » Integrate CosxSinx dx use three different methods
Integrate CosxSinx dx use three different methods
seifDate: Tuesday, 11/Jun/2013, 10:44 | Message # 1
Lieutenant
Messages: 42
Awards: 0
Reputation: 0
Status: Offline
IntegrateCosxSinx dx use three different methods. I only know one method cry .... can anyone help me about other topics?

Yes I can
 
AdminDate: Tuesday, 11/Jun/2013, 10:46 | Message # 2
Sergeant
Messages: 30
Awards: 5
Reputation: 1
Status: Offline
First Method:
Int, CosxSinx dx                     let U = Sinx ------>      du/dx = Cosx       then      dx = du/Cosx
Int, Cosx  U (du/Cosx)           hapo Cosxitaondoka na Cosx iliyopo ndani ya Bracket
Int, U du
= ½ U2 + C                          C is constant.
Since U = Sin x then:
=1/2Sin2x +C 
 
Second Method:
Int, CosxSinx dx               let U = Cosx ------>      du/dx = -Sinx      then   dx = du/-Sinx
Int, U Sinx (du/-Sinx)       hapo Sinx itaondoka na Sinx iliyopo ndani ya Bracket.)
Int, -U du
= -½ U2 + C                   C is constant.
Since U = Cos x then:
=-1/2 Cos2x +C              NOTE: Be careful withNegative Sign
 
 
Third Method:
Remember that sin2x= 2SinxCosx  so by dividing by 2 bothsides we obtain1/2Sin2x = SinxCosx 
Therefore: CosxSinx= 1/2Sin2x then integrate now 1/2Sin2x. this is the third method:
 
Int, 1/2Sin2x                           let U = 2x ------>      du/dx = 2      then   dx = du/2
Int, 1/2SinU X du/2
Int, 1/4SinU du
= -1/4CosU + C                      But U = 2x
Therefore:
=-1/4Cos2x +C
 
Forum » EDUCATION » MATHEMATICS » Integrate CosxSinx dx use three different methods
Page 1 of 11
Search:











COUNTER